Why deep learning? Why now?

" The two key ideas of deep learning for computer vision — convolutional neural networks and backpropagation were already well understood in 1989. The Long Short Term Memory (LSTM) algorithm, which is fundamental to deep learning for timeseries, was developed in 1997 and has barely changed since. So why did deep learning only take off … Continue reading Why deep learning? Why now?

Understanding how deep learning works:

We know that machine learning is about mapping inputs (such as images) to targets (such as the label “cat”), which is done by observing many examples of input and targets. We also know that deep neural networks do this input-to-target mapping via a deep sequence of simple data transformations (layers) and that these data transformations … Continue reading Understanding how deep learning works:

Using Tensorboard callback from Keras

If you are working with Keras library and want to use tensorboard to print your graphs of accuracy and other variables, Then below are the steps to follow. step 1: Initialize the keras callback library to import tensorboard by using below command from keras.callbacks import TensorBoard step 2: Include the below command in your program … Continue reading Using Tensorboard callback from Keras